Все разделы /  Математическое ожидание

 

Математическое ожидание

Числовыми характеристиками случайных величин являются математическое ожидание и дисперсия, а так же и моменты случайных величин

Математическое ожиданием М(Х) называется средняя величина возможных значений случайных величин, взвешенных по их вероятности. Выражается формулой:

Свойство 1. Мат. ожидание постоянной равно этой постоянной.

Свойство 2. Мат. ожидание суммы случайных величин равно сумме их мат. ожиданий:

Из этого свойства следует следствие:

Математическое ожидание суммы конечного числа случайных величин равно сумме их математических ожиданий:

 

Свойство 3. Математическое ожидание произведения независимых случайных величин Х и Y равно произведению математических ожиданий этих вел. M(XY)=M(X)·(M)Y.

Следствие. Постоянный множитель можно вынести за знак математических ожидания: М(сХ) = сМ(Х)

 

 

Смотри также:

Дисперсия

Биноминальный закон распределения

Закон Пуассона

Нормальный закон распределение



Hosted by uCoz